
1. INTRODUCTION
Visualization is a method of computing by which the

enormous bandwidth and processing power of the human
visual (eye-brain) system becomes an integral part of extract-
ing knowledge from complex data. In that regard, our previ-
ous work has discussed methods of appropriate mapping of
user goals to the design of pictorial content by considering
both the underlying data characteristics and the (human) per-
ception of the visualization (Treinish, 1999a). The introduc-
tion of new applications further challenges these ideas.

Figure 1. Visual data fusion for weather applications.

In particular, we have extended our earlier work (e.g.,
Snook et al, 1998) for situations where high-resolution models
can be utilized in variety of weather-sensitive decision-making
efforts such as emergency planning, energy production, airline
operations, risk assessment, agricultural activities, commodity
trading, etc. For each of these applications, information is
assessed and decisions are made based upon a variety of static
and dynamic data sets, a subset of which are weather-related.
The utilization of these data and the complexity of the deci-
sion-making process changes when high-resolution predictive
data are incorporated. These applications imply the coupling
of weather simulations with other models, analyses and data.
Visualization is a critical component to such integration. To
enable effective assessment and appropriate decisions, focused
visualizations must be designed to integrate these distinct data
sources, yet still be driven by user goals. Resultant visualiza-
tions which represent a fusion of weather and non-weather
data may not even illustrate forecasts of weather phenomena
directly. In these cases, the relevant information is in the
impact of weather via derived properties, which are influenced
by weather, not weather variables produced by a simulation.

The problem is illustrated schematically in Figure 1. Two tra-
ditional data generators are shown on the top and the bottom
(weather and non-weather, respectively). Although visualiza-
tion is applicable to both, typically this is mutually indepen-
dent. We propose an approach of visual data fusion to address
the visualization design problem in such applications.

2. DATA FUSION
Data fusion is simply the integration of multiple data sets.

This notion is derived from the fact that understanding of phe-
nomena from a scientific basis, creating an engineering design,
or assessment for sound decision making requires the utiliza-
tion of data from many distinct sources. Traditionally such
tasks have utilized a single data set, but as a result is often
incomplete for larger-scale problems that are becoming more
prevalent today. In parallel with the growth in problem com-
plexity are additional factors that make the need for data
fusion more practical and thus, more pervasive. The relative
availability of relevant data enables a comparison study for a
data generator as much as it does an independent analysis.
Secondly, data generators have become more capable and
accessible. Digital data acquisition is easier and cheaper.
Computational simulations are gaining fidelity and detail
while becoming more practical to compute. From verification
of computational and experimental models to steering simula-
tions with real-world observations, bringing data from multi-
ple sources together is much more powerful than using each
source separately. Visualization is critical to this integration,
without which the beneficiaries of such data would be over-
whelmed by volume or complexity (Uselton et al, 1998).

Data from multiple sources require care in their presenta-
tion so that artifacts due to the visualization process are not
introduced by data fusion and erroneously interpreted as fea-
tures in the data. For example, the data may not be uniformly
available for the spatial domains being examined. Each of the
data sets to be "fused" are generally not geographically co-reg-
istered and are defined on differing geometric structures. Fur-
ther, the coordinate system for visualization and interaction
may need to differ from those native to the data sets of interest.

These issues have been considered by others in a variety
of applications including earth science, physics, astronomy
and medical imaging (Uselton et al, 1998). In the majority of
these cases, the user goals focused on analysis or verification
as opposed to data assessment as illustrated in efforts to com-
pare computational fluid dynamics results with experimental
data from wind tunnels (Keely and Uselton, 1998). More
recent work has considered decision support (Bisantz et al,
1999) but from a human factors perspective.

3. APPROACH
To enable visual data fusion, a perspective of data man-

agement must be adopted by introducing an uniform data
model that is matched to the structure of the data as well how
such data are used. This implies a generalized mechanism to
classify and access data as well as efficiently map data to oper-
ations. The implementation of such a data model effectively
decouples the management of and access to the data from the
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actual application. This encapsulates the variety of sampling
and representations for diverse data and provides uniform
access. It it then a prerequisite to building applications that
utilize the data sets to be integrated (Treinish, 1999b). One
consequence of such a data (model)-centric approach is that
the same operation(s) can be applied to data sets that need to
be visually fused or correlated (i.e., displayed and interacted
together) without introducing superfluous interpolation or res-
ampling to a common mesh. The latter process implies a mod-
ification to the data, whose impact could be hidden in
subsequent visualization. Further, if a specific visualization
task requires a cartographic projection, then these data sets can
be independently warped by the prerequisite transformation.
Any geometric distortion that is introduced is due only to the
actual projection since the data and topology remain invariant
through such a transformation. It is also independent of the
choice of realization or rendering technique or cartographic
projection, and hence, provides a framework for experiment-
ing with different visualization strategies. As a result, the
fidelity of the original data sets is preserved in a coordinate
system suitable for dynamic interaction. It implies that correl-
ative visualization for visual fusion can be approached from
four perspectives. In all cases, the specific choices are dictated
by the goal of the visualization task(s) as defined by the indi-
viduals or applications utilizing the data.

1. Image Level. The capability to look at multiple sets of
data in exactly the same fashion (i.e., visual comparison
within a common framework). This can be achieved with
multiple visualizations in adjacent windows or mosaiced
together for qualitative comparison. These visualizations
are usually static, but might be accompanied by synchro-
nized animation sequences or geometric transformations
in which the representations are linked. Outside of the
latter, interaction is typically indirect.

2. Common View. The capability to utilize a variety of visu-
alization strategies within a chosen coordinate system
dictated by one of the data sets or independently by user
task. This represents a visual fusion which can support
both direct and indirect interaction, including numerical
querying. All of the relevant data are registered within
this common viewing framework. Qualitative compari-
sons are clearly supported, but direct quantitative com-
parisons are defined by interaction.

3. Data Level. The capability to numerically compare dis-
tinct data sets using either of the two previous approaches
for visualization. This does require the transformation
(e.g., interpolation) of one or more data sets to a common
basis (mesh, coordinate system, etc.) from which derived
quantities can be calculated (e.g., point-wise opera-

tions). The visualizations may involve the original data
and/or the derived data. From the discussion earlier this
can violate the principle of preserving fidelity at the cost
of supporting numerical comparisons.

4. Multiple Views. The capability to numerically and visu-
ally compare multiple data sets, particularly when some
of the data sets do not have a common basis for visual
fusion. In this case, the utilization of a variety of differ-
ent strategies is required, some of which must be in sepa-
rate instead of a common framework. Interaction may be
complex because separate metaphors for direct interac-
tion are required for each framework, although common
methods for indirect interaction are feasible. Unlike case
1, quantitative access is supported such that linked dis-
plays would indicate related numerical values or
"regions" of commonality that are queried.

4. APPLICATIONS
The aforementioned approach to data fusion is applied to

problems that relate to economic and societal impacts of
weather. In some cases, additional sources of weather infor-
mation, both historical and predictive may have further bene-
fit, when integrated into the decision-making process.

4.1 Emergency Planning

Weather-related catastrophes have led to over $48B in
property insurance claims from 1989 to 1993 in the US. In
North Carolina alone, ten major hurricanes from 1983 to 1996
resulted in about $50B worth of damage, almost $30B of
which led to losses by insurance companies (Kunkel et al,
1999). Hence, disaster planning or hedging for underwriting
risk-related insurance can benefit from improved weather pre-
dictions. In both cases, the impact of weather is relevant in
visualization but not the weather data directly. Although geo-
referenced visualizations are required, the illustration of time-
dependent factors related to property loss due to severe
weather are needed, not merely a visualization of predicted
wind velocity, for example. Usually, an Image Level (case 1)
approach is applied as shown in Figure 2. Each image con-
tains a simple two-dimensional map of a set of glyphs colored
by a different parameters. The glyphs are located at the cen-
troid of the area associated with zip codes.

However, the glyph locations are only marked on the map
when a set of conditions on house value, population and esti-
mated damage due to wind are met. Therefore, a Common
View (case 2) approach is more efficient by leveraging user
interaction as illustrated in Figure 3. The user is free to inter-
actively set the conditions and animate in time corresponding
to the weather simulation in hourly steps. This enables the
determination of areas of greatest impact due to severe

Figure 2. Image Level data fusion of a weather forecast with demographic data over an 800 x 800 km domain at 8 km resolution
centered over Dallas. Colored glyphs at zip code locations illustrate a subset of demographic and derived data.



weather. Essentially, it represents a simple method to specify a
query against various data sets, which are then used to con-
strain a visual integration for display and interaction. This
approach becomes Data Level (case 3) because the forecast
data are interpolated to zip code locations in order to support
the query constraints. These thresholds can also be augmented
to include other relevant demographic, customer or property
data. The demographic data shown are derived from available
census information (http://tiger.census.gov).

Figure 3. Common View data fusion showing the relation-
ship between demographic data and a weather forecast in
a screen capture of an interactive session. This also is a
Data View data fusion because the locations of estimated
damage are calculated from the weather model data.

In this example, the conditions for display are enhanced
to include a simple computational model. The level of wind-
induced damage is based upon analysis of effects on typical
residential buildings from severe weather (Unanwa et al,
2000). This approach to data fusion may be useful for plan-
ning purposes by an insurance company or deployment of
repair crews by a utility or local highway department.
4.2 Energy Demand Forecasting

Another application of a predictive weather model is to
forecast load on a power-generation facility or transmission
lines for efficient running of the facility or for power trading.
In both cases, meteorological information is an important
input as weather is a primary driver for electricity demand. It
has been estimated that the annual cost of under or over pre-
dicting electricity demand due to poor temperature forecasts is
several hundred million dollars in the US alone. Erroneous
weather data associated with startup-shutdown of generation
units can be worth $500K per day during peak load periods or
conservatively $8M annually to a regional power authority. In
addition, improved severe storm predictions to reduce outage
time can save a few hundred thousand dollars a year for a typi-
cal utility (Keener, 1997). Decisions in this industry are
driven by diverse non-weather data and processes including
load forecasting and econometric models, customer demo-
graphics, geography of power facilities, etc. that are not well
integrated. The weather information currently used is rela-
tively coarse leading to poor and costly decisions. Typically,
hourly forecast surface temperature and dew point values aver-
aged over a large geographic region are used. Alternatively,
more accurate data at greater frequency which are distinct for
different loads by geographic location and altitude can be
applied coupled with other factors that influence load (e.g.,

storm and cloud predictions). Since there is a relationship
between accuracy in load prediction vs. economic efficiency
(i.e., an under prediction implies having to buy power at a pre-
mium and over prediction means resources are wasted), cou-
pling of weather forecasts with econometric models is also
feasible.

These ideas are illustrated in Figure 4 using Data Level
fusion. It shows a map of Georgia with forecasted heat indices
at 8 km resolution. Major cities and locations of the genera-
tors owned and operated by Georgia Power, the local electric
utility, are shown by name. Each power plant location is also
marked with a pin. whose height and color indicate a predicted
electricity demand. A dual encoding is used because the
capacities of the power plants range over five orders of magni-
tude. Hence, height is a linear mapping while color bands are
scaled logarithmically. The load is computed interactively as a
function of temperature, humidity and time of day from a sim-
ple model. The temperature dependence is based upon a poly-
nomial approximation of the relationship between historical
data of power demand and weather observations, shown in
Figure 5 (Robinson, 1997). Regression on the data from sum-
mer weekdays in the southeastern United States after outliers
are removed yields,

W = 1.146 - 0.0225T - 0.000240T2 + 0.0000397T3 (1)

Figure 4. Data Level data fusion of a weather forecast at 8
km resolution centered over Atlanta with a prediction of
electricity demand at power plants operated by Georgia
Power. The demand is calculated from a model whose
input is derived from the numerical weather prediction.

Figure 5. Weather-dependent energy load, W(T).



The temporal variation is based upon a spline fit of hourly
electricity requirements for mid-week days in urban and sub-
urban tropical environments, which is consistent with other
results in the literature (Chang and Li, 1998). That component
is shown in Figure 6, which is then normalized for this appli-
cation.

Figure 6. Diurnal, mid-week energy load, N(t).

The temperature and temporal components are combined
for a total estimated load, L, such that

L = C[(0.2768809N(t) + 0.7231191)(W(THI)/2.9175)] (2)

The function is scaled by the rated power plant capacity, C,
using published data (http://www.georgiapower.com/
newsroom/plants.asp). Heat index, THI, is employed as a
more accurate measure of demand than simply temperature. It
is an apparent temperature derived from both temperature and
humidity as an indicator of personal comfort during the sum-
mer (Rothfusz, 1990). Therefore, it is directly related to air
conditioning usage and thus, electricity demand. The weather
model results are interpolated at each time step to the location
of each of the power plants. An example for the specific 24-
hour period of the forecast is shown in Figure 7 for the largest
power plant operated by Georgia Power (Bowen).

Figure 7. Predicted power demand at a specific generator
site derived from a weather-model-driven load forecast.

All of these capabilities are illustrated in Figure 8, which
is a screen capture of a prototype of an interactive application
for detailed load forecasting. The user has the ability to select
the type of power plant (fossil, hydroelectric and/or nuclear),
what data to show on the map (e.g., weather, geographic or
other customer/demographic) and to query individual power
plants (i.e., by visual selection). The results of the query
include the predicted load at each time step (as fine as every 10
minutes) as well as a plot of predicted load over 24 hours with
weather data at that location. The interactive application is
then a Multiple View (case 4) fusion.

Figure 8. Data Level (3d window) and Multiple View (with
2d plot) data fusion for weather-model-driven energy load
forecasting in a screen capture of an interactive session.
The multiple views are linked in time sequence and by
interactive selection in the 3d window.

The visual fusion techniques of Figures 3 and 4 are com-
bined in Figure 9, which shows the load forecast at the power
plants that use fossil fuels with a population map. The popula-
tion data are shown as colored contours on a logarithmic scale
to segment urbanized areas (red) and their location with
respect to the power generators under the heaviest demand.
Although these data are derived from static census sources, the
same techniques would apply to similar but proprietary cus-
tomer data owned by a regional electric utility.

Figure 9. Data Level and Common View data fusion to illus-
trate the correlation of a load forecast with demographic
data. The proximity of fossil fuel power plants with high
predicted load to major population centers (red) is easily
seen.

5. IMPLEMENTATION
The applications shown in Figures 3 and 8 present a user

interface based upon XWindow/Motif for indirect interaction
and OpenGL for direct three-dimensional interaction in carto-
graphic coordinates native to the weather simulation. They
have been implemented with Data Explorer (DX) (Abram and



Treinish, 1995). DX is a portable, open source, general-pur-
pose software package for visualization and analysis (http:/
/www.research.ibm.com/dx a n d http://
www.opendx.org). A generic toolkit was used to avoid hav-
ing to implement a graphics and computational infrastructure.
Unlike traditional meteorological graphics or geographic
information systems, DX is parallelized for multiprocessor
workstations and can utilize three-dimensional graphics accel-
erators. DX is built upon an unified data model that enables
these applications to operate directly on the native gridded
weather data without transformation or compression.

6. CONCLUSIONS AND FUTURE WORK
The visualization of applications of high-resolution

weather modelling have benefited from a focus on specialized
interfaces and tools matched to user goals and underlying visu-
alization tasks. Since the underlying toolkit is extensible tools
can be reused between applications with similar user interface
components. Although these applications and associated user
goals are different, underlying data fusion requirements and
visualization tasks are the same. Further, the need to employ a
relatively simple user interface is desirable to reduce the effort
for training of users in time-critical activities such as decision
support. It also reduces the cost of development and mainte-
nance, and enables more rapid iterative refinement with or
adaptation to new users. Therefore, within any given applica-
tion, incorporation of additional and more complex data sets
can also be addressed. But the goal remains the same -- to
develop simple interfaces and useful visual fusion.

The specific work discussed herein is on-going. To date,
most of this work has been of a prototyping nature as both
generic proof of concept as well as illustration of specific deci-
sion support problems. One aspect of continued efforts will be
to incorporate more sophisticated models or processing as the
consumer of weather forecast data. For example, the simple
load forecasting model can be enhanced to include wind speed
and sunshine duration effects and also, adjusted for more real-
istic temporal variation based upon day of week and season.
To aid in the decision making applications, migration to a
probabilistic representation will also be advantageous. In
addition, it is believed that these ideas can be extended to other
application areas such as agriculture, aviation, finance, etc.

The need for this type of data fusion occurs in other disci-
plines when an integrated view of the problem domain is
adopted. Hence, the applicability of these methods to other
problem areas will be investigated. This includes large-scale
engineering design when computer-aided (mechanical)
designs have to integrated with computational fluid dynamics,
structural analysis, styling design, wind-tunnel measurements
with physical models and actual testing with full-scale proto-
types. Other applications may include multi-modal imaging
such as in astronomy, earth sciences or medicine. Although
challenging they have less data diversity because conceptually
similar measurements are taken of the same physical space
with varying sampling schemes that yield different informa-

tion that have to be registered into a common coordinate sys-
tem.
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